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Equations of motion, in cylindrical co-ordinates, for the observed rotation of gases
within the gravitational potential of spiral galaxies have been derived from Carmeli’s
Cosmological General Relativity theory. A Tully-Fisher type relation results and ro-
tation curves are reproduced without the need for non-baryonic halo dark matter.
Two acceleration regimes are discovered that are separated by a critical acceleration
≈ 4.75 × 10−10 m s−2. For accelerations larger than the critical value the Newtonian
force law applies, but for accelerations less than the critical value the Carmelian regime
applies. In the Newtonian regime the accelerations fall off as r−2, but in the Carmelian
regime the accelerations fall off as r−1. This is new physics but is exactly what is
suggested by Milgrom’s phenomenological MOND theory.

KEY WORDS: Carmeli’s cosmological general relativity; Tully-Fisher; galaxy rota-
tion curves.

1. INTRODUCTION

The rotation curves highlighted by the circular motion of stars or more
accurately characterised by the spectroscopic detection of the motion of neutral
hydrogen and other gases in the disk regions of spiral galaxies have caused concern
for astronomers for many decades. Newton’s law of gravitation predicts much
lower orbital speeds than those measured in the disk regions of spiral galaxies.

The most luminous galaxies show slightly declining rotation curves (orbital
speed vs radial position from nucleus) in the regions outside the star bearing disk,
coming down from a broad maximum in the disk. Intermediate mass galaxies have
mostly nearly flat rotation speeds along the disk radius. Lower luminosity galaxies
usually have monotonically increasing orbital velocities across the disk.

The traditional solution has been to invoke halo ‘dark matter’ (Begeman et al.,
1991) that surrounds the galaxy but is transparent to all forms of electromagnetic
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radiation. In fact, astronomers have traditionally resorted to ‘dark matter’ whenever
known laws of physics were unable to explain the observed dynamics.

In 1983 Milgrom introduced his MOND (Milgrom, 1983a, 1983b, 1983c),
an empirical approach, which attempts to modify Newtonian dynamics in the
region of very low acceleration. Newton’s law describes a force proportional to
r−2, where r is the radial position from the center of the matter distribution, but
Milgrom finds that a r−1 law fits the data very well (Begeman et al., 1991).

Carmeli (2000, 2002) approached the problem from a different perspective.
He formulated a modification, actually an extension of Einstein’s general theory,
in an expanding universe taking into account the Hubble expansion as a funda-
mental axiom, which imposes an additional constraint on the dynamics of particles
(Carmeli, 1982).

Carmeli believes the usual assumptions in deriving Newton’s gravitational
force law from general relativity are insufficient, that gases and stars in the arms
of spiral galaxies are not immune from Hubble flow. As a consequence a univer-
sal constant a0 (in this case, slightly different to Milgrom’s) is introduced as a
characteristic acceleration in the cosmos. Using this theory Carmeli successfully
provided a theoretical description of the Tully-Fisher law (Carmeli, 1998).

Following Carmeli’s lead, Hartnett (2005) showed that the same line of
reasoning leads to plausible galaxy rotation curves. The latter used a density
model for spiral galaxies, that assumed that most of the mass of the galaxy
was in the nuclear bulge and that the density in the disk region was constant.
However by perturbing the density one could also get the variation in rotation
speeds as typically observed. That paper also assumed spherical coordinates and a
hyperbolic density distribution of disk matter, conditions which are not appropriate
for exponential-density-model galaxies.

In this paper we take the analysis further, and in a more rigorous way,
model the gravitational potential and the resulting forces determining how test
particles move in the disks of spiral galaxies using cylindrical coordinates and
an exponential density distribution. Two acceleration regimes are discovered.
In one, normal Newtonian gravitation applies. In that regime the effect of the
Hubble expansion is not observed or is extremely weak. It is as if the particles’
accelerations are so great that they slip across the expanding space. In the other,
new physics is needed. There the Carmelian metric provides it. In this regime
the accelerations of particles are so weak that their motions are dominated by the
Hubble expansion and as a result particles move under the combined effect of both
the Newtonian force and a post-Newtonian contribution.

2. GRAVITATIONAL POTENTIAL

In the weak gravitational limit, where Newtonian gravitation applies, it is
sufficient to assume the Carmeli metric with non-zero elements g00 = 1 + 2φ/c2,
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g44 = 1 + 2ψ/τ 2, gkk = −1, (k = 1, 2, 3) in the lowest approximations in both
1/c and 1/τ . Here a new constant, called the Hubble-Carmeli constant, is intro-
duced τ ≈ 1/H0. See Carmeli (2002) for details. The potential functions φ and
ψ are determined by Einstein’s field equations and from their respective Poisson
equations,

∇2φ = 4πGρeff, (1)

∇2ψ = 4πGρeff

a2
0

, (2)

where ρ is the mass density and a0 a universal characteristic acceleration a0 = c/τ .
As usual c is the speed of light in vacuo.

In Carmelian theory ρeff = ρ − ρc is used instead of matter density ρ. The
parameter ρc is the critical density of the universe given by ρc = 3/8πGτ 2 ≈
10−29 g cm−3. However in a galaxy, because ρ � ρc, ρc can be neglected in this
paper.

A comparison of φ and ψ in (1) and (2) leads to ψ = φ/a2
0 within an arbitrary

additive constant. Since both potentials are defined with respect to the same co-
ordinate system, in reality, we only need deal with one potential function, the
gravitational potential, φ.

In cylindrical coordinates (r, θ, z) the potential φ that satisfies (1) can be
found from Toomre (1963),

φ(r) = −2πG

∫ ∞

0
J0(kr) dk

∫ ∞

0
ρ(r ′)J0(kr ′)r ′ dr ′ (3)

where J0(kr) is the zeroth order Bessel function function and k is the z coor-
dinate scale factor (k = 1/b). It is also assumed that the density function can
be modeled as a delta function of the vertical coordinate z. Therefore the den-
sity ρ(r, z) = ρ(r)ρ(z) = ρ(r)δ(z) with no θ dependence. To correctly model the
effect of the spiral arms a θ dependence may be needed, but for our model it
is assumed independent. The requirement on the z dependence is satisfied with
density functions of the form

ρ(z) = 1

2b
sech

( z

b

)2
or e−|z|/b. (4)

Here, provided the scale length b is much smaller than the limit of the actual
matter distribution in the z direction then the integral over all z yields a contribution
to the mass of unity. This is the thin disk approximation which seems to be fairly
applicable over both disk and galactic bulge.

The integral over dk in (3) is the surface density which may be calculated
once the form of the density ρ is known. Following from observation we choose
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an exponential function of the form

ρ(r) = M

2πa2
e−r/a. (5)

for the radial dependence, where a is a radial scale length and M is the mass of
the galaxy.

3. EQUATIONS OF MOTION

The Hubble law describes the expansion of the cosmos and the matter em-
bedded in it. Therefore the line element for any two points in this ‘new’ space-
time-velocity is ds2 = g00c

2 dt2 + gkk (dxk)2 + g44τ
2 dv2 = 0. Here k = 1, 2, 3.

The relative separation in 3 spatial coordinates r2 = (x1)2 + (x2)2 + (x3)2 and
the relative velocity between points connected by ds is v. The Hubble-Carmeli
constant, τ , is a constant for all observers, therefore may be regarded as a constant
on the scale of any measurements.

The equations of motion (B.62a and B.63a from Carmeli, 2002) to lowest
approximation in 1/c are reproduced here,

d2xk

dt2
= −1

2

∂φ

∂xk
. (6)

This is the usual looking geodesic equation derived from general relativity
but now in 5 dimensions. And the second is a new ‘phase space’ equation derived
from the Carmeli theory (Carmeli, 2002),

d2xk

dv2
= −1

2

∂ψ

∂xk
. (7)

3.1. Newtonian

It follows from (6), (5) and (3), and the usual form of the circular motion
equation

v2

r
= dφ

dr
, (8)

that

v2 = GMr2

2a3
	, (9)

where G denotes the gravitational constant and

	 = I1

( r

2a

)
K0

( r

2a

)
− I0

( r

2a

)
K1

( r

2a

)
(10)

where I and K are standard zeroth and first order Bessel functions.
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Equation (9) is the usual Newtonian result for the speed of circular motion
in a cylindrical gravitational potential. This equation has been plotted in curve 3
of Figs. 2(a)–10(a) as a function of radial position from the center of a galaxy in
kiloparsecs (kpc) where kpc ≈ 3 × 1019 m. Best fits were determined with M and
a as free parameters. Through out this paper M is expressed in solar mass units
M� ≈ 2 × 1030 kg.

3.2. Carmelian

Using ψ = φ/a2
0 in (7) results in a new equation

v = a0

∫ r

0

dr√−φ
, (11)

where we have integrated and solved for v as a function of r . Using the potential
φ, determined from (5) and (3), in (11), results in

v = 2

3
a0

r3/2

√
GM

, (12)

which describes the expansion of space within a galaxy.
It must be realised that the only direction in the cylindrical coordinates of a

galaxy that is free to expand in the Hubble flow is the azimuthal (Hartnett, 2005).
Therefore (12) describes the velocity component in that direction. Carmeli applied
this line of reasoning (Carmeli, 1998, 2000).

To establish the combined result of the two equations of motion (9) and (12),
the simultaneous speed of test particles must be determined by the elimination of
r between the two equations. The physical meaning can be understood in terms
of particles that simultaneously satisfy both (6) and (7).

The usual Newtonian expression (6) describes motion under the central po-
tential but assumes that spatial coordinates are fixed. Whereas the new equation
(7) describes the expansion of space itself within a galaxy. Therefore we must find
the combined (simultaneous) effect of (9) and (12). The result is a post-Newtonian
equation,

v2/3 = (GM)5/3(
2
3a0

)
2a3

	, (13)

derived from (9) where the following substitution

r →
(

GMv2

(
2
3a0

)2

)1/3

,



2152 Hartnett

Fig. 1. Tully-Fisher law plotted on logarithmic axes. Curve 1 (solid line)
represents the fourth order dependence of the rotational speeds of tracer
gases in galaxies determined from the Carmelian equation (13). The
masses are expressed in solar mass units of M� = 2 × 1030 kg. Curve 2
(broken line) represents the straight line v4 = 2 × 109 + 0.064 M (Mass).

has been made from (12). The resulting equation, hereafter referred to as
Carmelian, cannot be solved analytically. However using the Mathematica soft-
ware package (13) can be solved numerically.

The result is plotted in curve 1 of Fig. 1 where it has been assumed that
a = 1 kpc and it is compared with the straight line v4 = 2 × 109 + 0.064 M (curve
2). For large M the small offset can be neglected. This result indicates that the
fourth order dependence on rotational speed (v) is directly proportional to mass
(M) for large masses.

Assuming that the masses, of the galaxies studied, are directly proportional
to their luminosity, this dependence then becomes the Tully-Fisher relationship.
This extends the work of Carmeli (2000), and derives the underlying theoretical
framework upon which the Tully-Fisher law is founded.

3.3. Rotation Curves

In Refs. Carmeli (1998, 2000) and Hartnett (2005), using spherical co-
ordinates, it was found that in the limit of large r and where all the matter
was interior to the position of a test particle, such a particle is also subject to an
additional circular motion described by (12). Apparently this is the result of the
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expansion of space itself within the galaxy but in an azimuthal direction to the
usual center of coordinates of the galaxy. In this paper also the same result (12)
was obtained but in this case derived using cylindrical coordinates.

Carmeli (1998, 2000) determined a Tully-Fisher type relation using the New-
tonian circular velocity equation expressed in spherical coordinates,

v2 = GM

r
, (14)

where it is assumed that test particles orbit at radius r outside of a fixed mass M .
Then by eliminating r between (14) and (12) we get the result. This is achieved
by taking the 3/2 power of (14) and multiplying it with (12) yielding

v4 = GM
2

3
a0. (15)

So by applying the same approach with (9) (raising it to the 3/2 power) and
multiplying it with (12) we can derive an equation describing the rotation curves
in galaxies. The result is

v4 = GM
2

3
a0

{( r

2a

)9/2
8 	3/2

}
, (16)

remembering 	 is a function of r/2a. It is is easily confirmed that as r → ∞,
( r

2a

)9/2
8 	3/2 → 1,

which is the radial position (or r) dependent part of (16). Hence (16) then recovers
the form of the Tully-Fisher relation (15).

By taking the 4th root of (16) we get an expression for the circular velocity
of test particles as a function of their radial position r . That result has been plotted
in curve 2 of Figs. 2(a)–10(a) for each galaxy with a and M determined as fit
parameters. The resulting curves have the characteristic flat shape for large radial
position r . At small values of r the rotation speeds determined from the Newtonian
equation (curve 3) dominate as seen in Figs. 4(a)–10(a).

4. ACCELERATIONS

The acceleration 2
3a0 in (12) can be considered to be a critical acceleration.

Therefore when we compare the accelerations derived from the Newtonian equa-
tion (9) and the Carmelian equation (16) with this critical acceleration we notice
two regimes develop. See Figs. 2(b)–10(b).

For example, Fig. 4(b) is very instructive. There the straight line (curve 1)
is the critical acceleration 2

3a0, curve 2 represents the acceleration derived from
the Carmelian equation (16) and curve 3 represents the acceleration derived from
the Newtonian equation (9). For the values, determined from the fits, of the mass
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(M) and the radial scale length (a), which determine how the matter density varies
as a function of radial position r , the curves 2 and 3 cross each other very close
to the critical acceleration. The significance is that for accelerations less than the
critical acceleration the Carmelian force applies and for accelerations greater than
the critical acceleration the Newtonian force applies. Note also that the Newtonian
curve 3 has a r−2 dependence and the Carmelian curve 2 has a r−1 dependence
above 10 kpc. When curves of the form r−x were fitted to the functions used in
Fig. 4(b) between 15 and 20 kpc, the coefficients x were determined to be x =
2.003 and x = 1.025, respectively.

From (9) the gravitational acceleration (v2/r) can be calculated in the limit of
r → ∞, outside most of the matter of the galaxy. As expected for the Newtonian
model it tends to GM/r2. And similarly from (16) the gravitational acceleration
(v2/r) can also be calculated in the limit of large r , for the Carmelian model. In

this case it is evident from (15) that it must tend to
√

GM 2
3a0/r . In this regime

the accelerations are very weak. This is very significant as alternative theories of
gravity have been suggested (for example, Milgrom, 1983a, 1983b, 1983c) where
the force of gravity falls away as r−1 for small accelerations. However for small r ,
that is, where r → 0, close to the origin of the central gravitational potential, the
effect of the Carmelian force law becomes extremely small and is many orders of
magnitude smaller than that for the Newtonian force law.

5. SAMPLE OF GALAXY ROTATION CURVES

A sample of 9 galaxy fits are shown in Figs. 2–10. The top (a) figures show
the rotation curve fits and the bottom (b) figures show the resulting acceleration
regimes. In each figure, the measured rotational speeds of tracer gases in the chosen
spiral galaxy is shown as as a function of radial position (curve 1). Measured
data are taken from Sofue et al. (1999). Theoretical curves from the Carmelian
equation (16) (curve 2) and from the Newtonian equation (9) (curve 3) are fitted
over the range of r which best fit the data by allowing a and M to be free
parameters. The accelerations in the bottom (b) figures are derived from the
Carmelian (curve 2) and the Newtonian (curve 3) equations respectively with
values of a and M derived from the fits in the (a) figures. These are compared with
(curve 1) the critical acceleration 2

3a0 ≈ 4.75 × 10−10 m s−2 determined elsewhere
from τ ≈ 4.21 × 1017 s, which is the reciprocal of the Hubble parameter at zero
distance h ≈ 73.270 km s−1 Mpc−1.

5.1. Extragalactic Spirals

In this section, I discuss individual galaxy curve fits, starting with Fig. 2
showing the barbed spiral NGC 3198. In each case, because of the possibility
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Fig. 2. (a) Above: The rotational speeds of tracer gases in NGC 3198 (SBc
barbed spiral)(circles - curve 1). Theoretical curve fits from the Carmelian
equation (16) (broken curve 2) and from the Newtonian equation (9)
(curve 3) (b) Below: The critical acceleration 2

3 a0 (curve 1). The rotational
accelerations determined from the Carmelian (curve 2) and the Newtonian
(curve 3) equations with their respective values of a and M .

of different acceleration regimes, both Carmelian and Newtonian curve fit were
attempted. In Fig. 2(a) the Carmelian fit is shown by the broken curve 2 to
be the only good fit. The scale radius a = 1.85 kpc and M = 0.984 × 1010 M�
determined from the fit. Curve 3 shows the best Newtonian fit with a = 2.99 kpc
and M = 4.2 × 1010 M� but it doesn’t fit well at high values of r . The Newtonian
fit results in a mass at least 4 times greater than that from the Carmelian fit. The
scale radius determined from luminous matter for this galaxy is a = 2.5 kpc which
is closer to the Carmelian curve determination.

In the Fig. 2(b) curve 2 shows the acceleration using the Carmelian determined
values of the scale radius a and mass M . Curve 3 shows the acceleration for
Newtonian fit determined values. Clearly curve 2 is dominant and is always less
than the critical acceleration 2

3a0. In this model, when the accelerations are less
than the critical value the Carmelian force applies.
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Fig. 3. (a) Above: The rotational speeds of tracer gases in NGC 0598
(Sc spiral) (circles - curve 1). Theoretical curve fits from the Carmelian
equation (16) (curve 2) and from the Newtonian equation (9) (curve 3).
(b) Below: The critical acceleration 2

3 a0 (curve 1). The corresponding
rotational accelerations determined from the Carmelian (curve 2) and the
Newtonian (curve 3) equations.

Next the data for NGC 0598, a Sc spiral galaxy, shown in Fig. 3 (a), fits
both a Carmelian and a Newtonian curve. From the Carmelian model the scale
radius a = 1.85 kpc and M = 0.13 × 1010 M� determined from the fit. Clearly
the Carmelian curve 2 is the better fit over the Newtonian curve 3 for the following
reasons. Firstly the data (circles - curve 1) continue to rise or at least are not falling
at the extremity of the available measured range. The Newtonian curve indicates
it should fall. Secondly from Fig. 5.1.(b) the accelerations are much less than the
critical value 2

3a0 and hence in this regime the Carmelian force law applies.
From the Newtonian model a scale radius of a = 2.22 kpc and M = 1.42 ×

1010 M� were determined but the fit doesn’t conform to the model. Nevertheless
the Newtonian fit results in a mass 10 times greater than the fit for the Carmelian
model.

Figures 4 and 5 show both Newtonian and Carmelian models fit the rotation
curve data for the galaxies NGC 2903 and NGC 7331. In the high acceleration
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Fig. 4. (a) Above: The rotational speeds of tracer gases in NGC 2903
(Sc spiral) (circles - curve 1). Theoretical curve fits from the Carmelian
equation (16) (curve 2) and from the Newtonian equation (9) (curve 3)
(b) Below: The critical acceleration 2

3 a0 (curve 1). The corresponding
rotational accelerations determined from the Carmelian (curve 2) and the
Newtonian (curve 3) equations.

regime a Newtonian fit is applicable and when the acceleration drops below 2
3a0

the Carmelian applies. From the Table the best fit determined values of a and
M for each galaxy are listed. They are compared with published values of a and
masses determined from different methods. The Table lists these important data
derived where valid curve fits were possible. The corresponding figure and galaxy
is listed. The data are discussed below.

In these and all subsequent top (a) figures, the fits for curves 2 and 3, re-
spectively, apply only for accelerations less than and greater than the critical
acceleration. In the rotation curve fits, in the top (a) figures, the circular velocities
are not added but each apply over their respective regimes. This means the masses
determined from the Newtonian fits must be less than those from the Carmelian fits
because the Newtonian determined mass must lay within the radius R where the
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Fig. 5. (a) Above: The rotational speeds of tracer gases in NGC 7331
(Sbc spiral) (circles - curve 1). Theoretical curve fits from the Carmelian
equation (16) (curve 2) and from the Newtonian equation (9) (curve 3)
(b) Below: The critical acceleration 2

3 a0 (curve 1). The corresponding
rotational accelerations determined from the Carmelian (curve 2) and the
Newtonian (curve 3) equations.

two curves cross. The Newtonian fits occur in the stronger acceleration regimes
(>2

3a0) close to the galactic center as indicated by all of the bottom (b) figures.
The Table lists in Col. 12 the radial position (R) where the Newtonian and

Carmelian regimes meet, the mass (MR) in Col. 13 for all the mass where r < R

and the total mass M shown in Col. 8 (Carmeli M from fit), which is the Carmelian
model determined mass. As expected the values of MR ≤ M determined from the
Newtonian regime listed in Col. 7.

Figures 6 and 7, respectively, show NGC 2841 and IC 0342, which have
been modeled with two central components with different scale radii. Both seem
to have a dense mass concentration toward their centers. The scale radii for these
inner most concentrations are a = 0.09 kpc and a = 0.05 kpc for NGC 2841 and
IC 0342, respectively. The combined rotation curve for IC 0342 is a much better
fit to the data using the two-acceleration-regime model than that of the former,
NGC 2841. Nevertheless the theory works well in these type of galaxies also.
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Fig. 6. (a) Above: The rotational speeds in NGC 2841 (Sb spiral) (circles
- curve 1). Theoretical curve fits from the Carmelian equation (16) (curve
2) and from the Newtonian equation (9) (curve 3) (b) Below: The critical
acceleration 2

3 a0 (curve 1). The corresponding rotational accelerations
determined from the Carmelian (curve 2) and the Newtonian (curve 3)
equations.

Figures 8 and 9, respectively, show NGC 1097 and NGC 2590 modeled with
only one central dense Newtonian component and they fit the model very well.
Deviations in most cases I believe can be attributed to the fact that no azimuthal
dependence has been added to the model, nor does it allow for anything but
constant scale radii over regions of the galaxy where the fits apply. That is clearly
unphysical but seems to be a reasonable approximation.

The Table also shows, in Col. 9, the mass (M10) determined at r = 10 kpc
using the Newtonian formula

M = v2r

G
(17)

assuming that most of the mass is internal to r = 10 kpc and the measured rotation
speeds. This calculation is compared with the mass (M10), in Col. 10, derived from
the Carmelian equation with r = 10 kpc. The ratios of these masses are shown in
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Fig. 7. (a) Above: The rotational speeds in IC 0342 (Sc spiral)((circles -
curve 1). Theoretical curve fits from the Carmelian equation (16) (curve
2) and from the Newtonian equation (9) (curve 3) (b) Below: The critical
acceleration 2

3 a0 (curve 1). The corresponding rotational accelerations
determined from the Carmelian (curve 2) and the Newtonian (curve 3)
equations.

Col. 11. It indicates that using normal Newtonian/Keplerian dynamics seriously
over estimates galaxy masses by between 2 and 7 times. These values are consistent
with the needed mass levels of halo dark matter to achieve the correct rotation
curves.

5.2. The Galaxy

Considering the (Milky Way) Galaxy the same analysis has been applied
to the data from Honma and Sofue (1997). See the rotation curve in Fig. 10(a).
Other observers don’t record the central peak indicative of a large central mass
concentration. However the compact radio source Sagittarius A* at the Galactic
center is widely believed to be associated with the supermassive black hole with
a mass of about 3.59 ± 0.59 × 106 M� (Eisenhauer et al., 2003). Then there
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Fig. 8. (a) Above: The rotational speeds of tracer gases in NGC 1097 (SBb barbed
spiral) (circles - curve 1). Theoretical curve fits from the Carmelian equation (16)
(curve 2) and from the Newtonian equation (9) (curve 3) (b) Below: The critical
acceleration 2

3 a0 (curve 1). The corresponding rotational accelerations determined
from the Carmelian (curve 2) and the Newtonian (curve 3) equations.

is the vast concentration of matter in the Galactic bulge. From the Newtonian
curve fit we’d expect that within 1.2 kpc of the center there is a mass of about
M = 4.5 × 109 M�.

The Carmelian curve fit (curve 2 in Fig. 10(a)) over the range 3 to 10 kpc is
an excellent fit. The acceleration regimes, consistent with the curve fits (curves 2
and 3) in Fig. 10(a), are shown in Fig. 10(b). Except for the intervening region
the fits agree well with the theory. The discrepancy could be due to an unmodeled
higher concentration of mass in the central bulge region. Deviations in the spiral
arms from a smooth exponential density decay are consistent with the oscillations
about curve 2 in Fig. 10(a).

The distance of our solar system from the Galactic center has been esti-
mated at 9.95 kpc (Honma and Sofue, 1997) and more recently as 7.94 ± 0.42 kpc
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Fig. 9. (a) Above: The rotational speeds of tracer gases in NGC 2590 (Sb spiral)
(circles - curve 1). Theoretical curve fits from the Carmelian equation (16) (curve
2) and from the Newtonian equation (9) (curve 3) (b) Below: The critical acceler-
ation 2

3 a0 (curve 1). The corresponding rotational accelerations determined from
the Carmelian (curve 2) and the Newtonian (curve 3) equations.

(Eisenhauer et al., 2003). Likewise the enclosed mass may be calculated using both
(17) and (16). When one uses the normal Newtonian/Keplerian calculation (17)
and v = 200.78 km s−1 the speed of the solar system orbiting the Galactic center, it
results in an estimate of the enclosed mass of M10 = 9.3 × 1010 M� as compared
with M10 = 2.3 × 1010 M� from the Carmelian calculation (16), which is 4 times
smaller. For a distance 7.94 kpc the Keplerian calculation of the enclosed mass is
M10 = 7.6 × 1010 M�, which is 3.3 times greater than the Carmelian calculation
for the enclosed mass at that distance.

6. CONCLUSION

Carmeli’s Cosmological General Relativity theory provides a solution to the
rotation curve anomaly in the outer regions of spiral galaxies. Equations of motion
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Fig. 10. (a) Above: The rotational speeds of tracer gases in the Galaxy
(Milky Way Sb spiral). Theoretical curve from the Carmelian equation (16)
(curve 2) and from the Newtonian equation (9) (curve 3) Measured data
shown in curve 1. (b) Below: The critical acceleration 2

3 a0 (curve 1). The
corresponding rotational accelerations determined from the Carmelian
(curve 2) and the Newtonian (curve 3) equations, respectively.

have been derived from Carmeli’s metric assuming a gravitational potential in
cylindrical coordinates. A Tully-Fisher type relation results and the rotation curves
for spiral galaxies are accurately reproduced without the need for non-baryonic
halo dark matter.

Two acceleration regimes are discovered that are separated by a critical
acceleration 2

3a0. For accelerations larger than the critical value the Newtonian
force law applies, but for accelerations less than the critical value the Carmelian
regime applies. In the Newtonian regime the accelerations fall off as r−2 as
expected, but in the Carmelian regime the accelerations fall off as r−1. This is
new physics but is exactly what is suggested by Milgrom’s phenomenological
MOND theory. However in this case a theoretical basis is found, whereas until
now, no theory has been found for Milgrom’s MOND. This theory also provides
an understanding of the connection between the two regimes.
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